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A STRONGLY DEGENERATE CONVECTION-DIFFUSION PROBLEM 
MODELING CENTRIFUGATION OF FLOCCULATED SUSPENSIONS 

RAIMUND BÜRGERA AND KENNETH HVISTENDAHL KARLSENB 

ABSTRACT. We prove existence and uniqueness of BV entropy solutions of a strongly 
degenerate convection-diffusion problem modeling centrifugation of flocculated suspen- 
sions. A modification of the generalized upwind method is employed to solve the initial- 
boundary value problem numerically, i.e., to simulate the centrifugation process. 

1. INTRODUCTION 

We consider the quasilinear strongly degenerate convection-diffusion equation 
ru 

ut + f{u,x)x = A(u)xx + g(u,x), A(u) := / a{s)ds; (x,t) G QT := {xux2) x (0,T),   (1) 
Jo 

where we assume that / > 0, supp/(-,x) C [0,1], a(u) - 0 for u < uc and u > 1, and 
a(u) > 0 otherwise, i.e., equation (1) is of hyperbolic type for u < uc and u > 1 and of para- 
bolic type for uc < u < 1. We assume that /(-, x) is continuous and piecewise differentiable 
with ||9u/(-,rc)|| < M and that A(-) and g(-,x) are Lipschitz continuous uniformly in x, 
and that f(u, -),g{u, ■) G C1(xi,x2) uniformly in u. In particular, the diffusion coefficient 
o(-) is allowed to be discontinuous. We consider the initial and boundary conditions 

u(x,0) = u0{x), 0 < UQ(X) < 1, x G [xux2], (2) 

f(u,xh) - A(u{xh,t))x = 0, xb G {xux2}, t G (0,T], (3) 

and assume that the initial function satisfies 

u0e{ue BV(xux2) : u(x) G [0,1]; 3M0 > 0 : Ve > 0 : TV{xuX2)(dxA
£(u)) < M0},   (4) 

where Ae is defined in terms of a standard C°° mollifier oje with suppu;e C {-£,£) via 
ru 

aE{u)~((a + e)*uj£)(u),    As{u)~       a£(s)ds. (5) 
./o 

Remark 1. If A G C1, then it is sufficient to assume that TV(XuX2)(u'0) < oo. Moreover, 
the regularity assumption on f(u, •) used this paper can be weakened, see [14] for details. 
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2 BURGER AND KARLSEN 

The study of strongly degenerate hyperbolic-parabolic equations such as (1) is in part 
motivated by a recent theory of sedimentation-consolidation processes [8]. While the paper 
[4] is concerned with the case of settling in a gravitational field, which leads to an equation 
similar to (1) but without a source term, we here focus on the application of this theory to 
a centrifugal field in a rotating frame of reference [3]. It is the purpose of this contribution 
to briefly outline how the analysis of strongly degenerate convection-diffusion problems 
presented in detail in [4, 14] (see also [6]) can be extended to the initial-boundary value 
problem (IBVP) (l)-(3), and to draw attention to a new application of strongly degenerate 
equations. In addition, we utilize an adaptation of the generalized upwind finite difference 
method presented in [5] to solve the IBVP numerically, that is to simulate the centrifugation 
process. For an overview of the mathematical and numerical theory of (strongly) degenerate 
parabolic equations, we refer to the lecture notes by Espedal and Karlsen [11]. 

This paper is organized as follows. In Section 2 we state and comment the definition 
of entropy solutions of the IBVP. We then outline in Sections 3 and 4 the existence and 
uniqueness proofs of entropy solutions, following the vanishing viscosity method and re- 
cent ideas by Carrillo [9] and Karlsen and Risebro [14], respectively. We come back to the 
application to centrifugation in Section 5, in which we present a working numerical algo- 
rithm and numerical solutions for the IBVP. 

2.   ENTROPY SOLUTIONS 

Due to both the degeneracy of the diffusion coefficient a(-) and the nonlinearity of /(•, x), 
solutions of (1) are discontinuous and have to be defined as entropy solutions. 

Definition 1. A function u G L°°(QT) D BV(QT) is an entropy solution of the IBVP 
(l)-(3) if (a) A(u)x e L2(QT), (b) for almost all t e (0,T), 7*b(/(«,-) - M*)*) = °> 
xh e {xi,x2}, (c) limt|o u(x, t) — u0(x) for almost all x € (xi,x2), and (d) 

Vv? G C0°°(Qr), <P > 0, VA: € R :  ff   [\u - k\<pt 

+ sgn(u - k)  [f(u, x) - f(k, x) - A{u)x] ipx - [fx(k, x) - g(x, u)] (p ] dtdx > 0.    (6) 

Here jXl and 7I2 denote the traces with respect to x I x\ and x t x2, respectively. 
Entropy inequalities such as (6) go back to Kruzkov [16] and Vol'pert [17] for first order 
equations and to Vol'pert and Hudjaev [18] for second order equations. 

Remark 2. The BV(QT) assumption in Definition 1 is only used to ensure the existence 
of the traces 7Xl and jX2. Moreover, note that we can require that the boundary conditions 
are satisfied in a pointwise sense almost everywhere, whereas Dirichlet boundary conditions 
such as those stated in [4] (which are not considered here) have to be treated as entropy 
boundary conditions [7]. Finally, we point out that it is at present not known whether jump 
conditions for hyperbolic-parabolic equations such as those by Wu and Yin [20] (see also 
[7]) are valid here, since these jump conditions rely on stronger regularity properties (for 
example, Lipschitz continuity) of the diffusion coefficient a(-) than is stipulated here. 
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3.   EXISTENCE OF ENTROPY SOLUTIONS 

Existence of entropy solutions is shown by the vanishing viscosity method. To this end, 
consider the regularized uniformly parabolic IBVP, in which the functions /, g and u0 

have been replaced by smooth approximations that ensure compatibility conditions and 
existence of smooth solutions for fixed e > 0, and where A£ is defined in (5): 

u£
t+f£(u,x)x = A£(u£)xx + g£{u£,x),    {x,t)eQT, (7a) 

us(x,0) = u£
0(x), x G (xi,x2); f(u£,xh) - A£(u£(xh,t))x = 0, xh G {xux2}, te (0,T]. 

(7b) 

Lemma 1. The following uniform estimates are valid for solutions u£ of the regularized 
IBVP (7), where the constants Mi to M3 are independent of e: 

\\ue\\L~{QT) < Mi; \\ux(;t)\\L~{xuX2) < M2 and K(-,i)||LOo(xi)l2) < M3Vt G (0,T].    (8) 

Sketch of proof The application of the maximum principle to establish the first estimate 
is standard and not repeated here; we refer to the proof of Lemma 9 in [4] for details. 

Defining sgn^(r) := s'gn(r) if \r\ > n, sgn^r) := r/n if \T\ < n and \x\v := f*sgnv{£)d£ 
for 7] > 0, we obtain by differentiating (7a) with respect to x, multiplying the result by 
sgnJ7(ii|), integrating over QTo, 0 < T0 < T, integrating by parts and using (7b) 

/    \u£
x(x,T0)\dx <        \(u£

0)'(x)\dx+        sgn,«(a;Jt))«f(a;,*)    dt+ sgn'v(u
£

x) 
Jxi Jxi 'Jo xi JJQTO 

■ [fu(u£,x)-dx(a£{u£))]u£
xdtdx+ //     sgnr]{ux)(g£

u(u
£,x)u£

x +ge
x(u

£,x)) dtdx.   (9) 
JJQT0 

To derive the second inequality of Lemma 1 from (9), we repeat the proof of part (a) of 
Lemma 11 in [4] to estimate the first three integrals of the right-hand side of inequality (9) 
for 7] —> 0. The integrand of the last term can for rj -4- 0 be rewritten as \ue

x\g
e

u + sg-n.{ux)gE
x. 

Since g£
u and gx are uniformly bounded due to our assumptions on g, the desired estimate 

on ||f4(">*)IU°°(zi,z2) can be established by an application of Gronwall's lemma. 
The same argument can finally be employed to extend the derivation of the estimate on 

||wt(')0IU°°(xi,a:2) m Lemma 11 of [4] to the present equation with source term. ■ 

From the estimates established in Lemma 1 we may conclude that there exists a sequence 
e = en I 0 such that the sequence of solutions {u£n } of the IBVP (7) converges in L1 (QT) 

to a function u € L°°(QT) n BV(QT)- We now have to show that u is actually an entropy 
solution of the IBVP (l)-(3). Part (a) of Definition 1 follows from the following lemma, 
whose (short) proof is a straightforward extension ofthat of Lemma 10 in [4]: 

Lemma 2. The limit function u of solutions u£ of (7) satisfies A(u)x G L2
(QT)- 

Finally, repeating the proofs of Lemmas 5 and 12 of [4], we can show 

Lemma 3. The viscosity limit function u of solutions ue of (7) satisfies (6) and the initial 
and boundary conditions mentioned in Definition 1. 

Summarizing, we have: 

X Uxx\ 
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Theorem 1. The IBVP (l)-(3) admits an entropy solution u. 

4.   UNIQUENESS OF ENTROPY SOLUTIONS 

After the important work by Carrillo [9], the uniqueness proof for entropy solutions 
of degenerate parabolic equations has become very similar to the "doubling of variables" 
proof introduced by Kruzkov [16] for hyperbolic equations. The key proposition allowing to 
apply Kruzkov's "doubling device" to second order equations is the following version (see 
Karlsen and Risebro [14] for its proof) of an important lemma from [9], which identifies a 
certain entropy dissipation term (i.e., the right-hand side of (10) below). 

Lemma 4 (Carrillo's lemma). Let u be an entropy solution of the IBVP (l)-(3).   Then, 
for any non-negative ip G C^°(QT) and any k e (uc, 1), we have 

//   (\u-k\^t + sgn(u-k)  [f(u,x)-f{k,x)-A{u)x]<px 

JJQT (10) 
- \fx{k,x) - g{x,u)]ip])dtdx = lim //   (A{u)J2sgn;(A(u) - A{k))<pdtdx. 

J' iio JJQT 

Equipped this lemma, one can prove the following main theorem: 

Theorem 2. If v and u are two entropy solutions of the IBVP (l)-(3), then we have for 

any ip € C?{QT), <P > 0: 

(\v - u\ipt + sgn(w - u) [f(v,x) - f(u,x) - (A(v)x - A(u)y)](px 

QT
K (11) JJo 

+ sgn(u - u) [g(v, x) - g(x, u)]ip) dtdx > 0. 

Sketch of proof. The argument given below relies on Lemma 4 and Kruzkov's idea of 
doubling the number of dependent variables together with a penalization procedure. We 
let (p e C°°{QT x QT), V>0,(p = (p(x,t,y,s), v = v(x,t), u = u(y,s), and introduce the 
"hyperbolic" sets £„ = {(x,t) G QT ■ v(x,t) < uc or v(x,t) > 1} associated with v and 
£u = {{y, s)eQr- u(y, s) < uc or u(y, s) > l} associated with u. 

From the entropy inequality for v(x,t) (with k = u(y,t)), the entropy inequality for 
u(y,s) (with k = v(x,t)), and Lemma 4, the following inequality was derived in [14]: 

11II ('U ~~ U' ^ + ^ + Sgn^ ~ ^ ^^'^ ~ ^U' ^ ~ (A^X ~ A^y^ ^x + ^ 
QTXQT 

+ sgn(u - u) [g(v, x) - g(u, y)]ip) dtdxdsdy + EConv 

> lim       ffff     {A{v)x - Aiu^Ysgn'^Aiv) - A{u))ipdtdxdsdy > 0, (12) 

(QT\£U)X(QT\£V) 
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where the "error term" Econv takes the form 

#Conv = //// sgn(?; - u)([(f(u,y) - f(u,x))ip]x - [(f{v,x) - f(v,y))tp]yj dtdxdsdy. 

QTXQT 

We are now on familiar ground [16] and introduce in (12) the test function 

where {8h}h>o is a standard regularizing sequence in R. Observe that 

Following [14] (see also [16] since f(u, •) is smooth), one can show that lim/40 -Bconv = 0. 
Consequently, by sending h I 0 in (12), we get (11). ■ 

Define for sufficiently small h > 0 the functions 

ph(x) :=  /     5h(Z) df,   ph{x) := 1 - ph{x -xx- 2h),   uh{x) := ph(x - (x2 - 2h)),   (13) 
J—00 

where {Sh}h>0 is again the standard regularizing sequence in E. Concerning these functions, 
we have the following lemma (whose proof is easy): 

Lemma 5. Let u G L1(0,T;L<x(xi,x2)).   // the traces jXlu := {ju)(xl,t) and jX2u := 
(ju)(x2:t) exist a.e. in (0,T), then we have for <p> G CCO

(QT) 

lim //    dx(ip(x,t)(l-ph{x)-uh{x))ju{x,t)dtdx=  /   [p(xut)~/Xlu - ip(x2,t)~/X2u) dt. 

We are now in a position to deduce from (11) the following uniqueness result: 

Corollary 1. Let v,u be entropy solutions of the IBVP (l)-(3) with initial data v0,u0, 
respectively. Then for allt G (0,T), \\v{-,t)-u(-,t)\\Li{xuX2) < exp(t||^||Lip) ||v0—MolUi(xi,x2)- 
In particular, the IBVP (l)-(3) admits at most one entropy solution. 

Proof. In (11), we choose <p(x,t) = ((1 - ph{x) - uh(x))x(t) with x e C0°°(0,T), x > 0, 
and ph and vh defined in (13). Note that ip tends to x(t) as h I 0. Taking the limit h 10, 
we obtain from Lemma 5 and the boundary conditions at x = a, b (see Definition 1): 

//    \u - v\x'(t) dtdx > - sgn(v - u)[g{v,x) - g{u,x)]x{t)dtdx. (14) 
JJQT JJQT 

From (14), it follows that 

- ff   \u-v\x'{t)dtdx<\\g\\Up ff   \u-v\X{t)dtdx. (15) 

Fixing r G (0,T), choosing x(t) as ph(t) - ph(t - r) in (15), subsequently sending h 1 0, 
and using Gronwall's lemma, we get the L1 stability estimate ||U(-,T) - U(-,T)\\LI(XUX2) < 
exp(r||^||Lip)||u(-,0) - u(-,0)||Li(XliX2). Since r G (0,T) was arbitrary, we are finished.     ■ 
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b)7=l 

> = &■ 

0< tj><< 4>><pc 

<P = 4>c 

FIGURE 1.    (a) Rotating tube, (b) rotating axisymmetric cylinder. 

Remark 3. Following [10, 13, 14], it is possible to prove that the unique entropy solution 
of the IBVP (l)-(3) depends continuously on the nonlinearities in the problem. 

5.   BATCH CENTRIFUGATION OF FLOCCULATED SUSPENSIONS 

5.1. Introduction. Extending the arguments developed in [8] for a purely gravitational 
force to rotating systems, Bürger and Concha [3] show that the settling of a flocculated 
suspension in a tube with constant cross section (7 = 0, Fig. 1 (a)) or in a rotating 
axisymmetric cylinder (7 = 1, Fig. 1 (b)) is governed by the field equation 

W + r^(/ck(M1+7) = r-Wr{rWrA(ct>)), (16) 

in which </> is the sought volumetric solids concentration, r the radius, /ck(-) the centrifugal 
Kynch flux density function, u the angular velocity and A(-) is defined as in (1). The 
function /ck(-) is a nonnegative Lipschitz continuous function with support in [0,1], and the 
diffusion coefficient is defined by o(0) := fck((j))a^{4))/{Apcß), where Ap > 0 is the solid-fluid 
mass density difference and <re'(-) is the'derivative of the effective solid stress function. We 
mention that equation (1) is based on the neglection of both the gravitational and Coriolis 
forces compared to the centrifugal force and refer to [3] for details on its derivation. 

Equation (16) inherits its degeneracy from the constitutive assumption that ae(-) vanishes 
while the solid floes are not in touch with each other, i.e., while the local concentration 
(j) does not exceed a critical value (f)c, and that <re'(</>) > 0 for </>c < <j> < 1. Assuming for 
simplicity that supp/ck = (0,1), we see that a(j>) = 0 and hence (16) is of hyperbolic 
type for (f> < (j)c and <f> > 1 and that otherwise a{<j>) > 0, i.e., (16) is of parabolic type. 
Consequently, (16) is indeed strongly degenerate. The special case a = 0 is included in our 
discussion and corresponds to the equation studied by Anestis and Schneider [1]. 

We assume that r varies between an inner and outer radii R0 > 0 and R > R0. The 
solids phase velocity vanishes at r = RQ and r = R, which implies the boundary conditions 

(/ck(</»)u;2ßb + 9rA(0))(i?b,t) = O,    t>0, Rbe{R,R0}. (17) 

The initial condition is 

</>(r,0) = </><, (r),    R0<r<R. (18) 
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Differentiating out the convection and diffusion terms in equation (16), we obtain in view 
of the model assumptions an IBVP of the type (l)-(3). The existence and uniqueness 
analysis therefore states that the centrifugation model admits a unique entropy solution (f>. 

5.2. Numerical algorithm. To solve the IBVP given by (16), (17) and (18) numerically, 
we employ a modification of the generalized upwind finite difference method presented in 
detail in [5] for gravity settling. For an overview of numerical methods for approximating 
entropy solutions of degenerate parabolic equations, we refer again to [11]. 

Let J.JVeN, Ar := (R - R0)/J, At := T/N, rj := R0 + jAr, j = 1/2,1, 3/2,..., J - 
1/2, J and <#? « (p(rj,nAt). The computation starts by setting 0° := <j)o{fj) for j — 
0,..., J. Assume then that values </»", j = 0,..., J at time level tn := nAt are known. To 
compute the values </>"+1, we first compute the extrapolated values (pj := </>" - (Ar/2)s^ 
and (ffi := ffi + (Ar/2)sr- for j = 1,..., J - 1, where the slopes s" can be calculated, for 
example, by the minmod limiter function M(-, •, •) in the following way: 

s] = MMfay - $_!, {$+1 - ^J/2, (Q+1 - <^))/Ar,    j = 2,..., J - 2. (19) 

where MM(o, b, c) = min{a, b, c} if a,b,c> 0, MM(a, b, c) = max{a, b, c} if a, 6, c < 0 and 
MM (a, ft, c) = 0 otherwise. Moreover we set s^ = s™ = s"_: = s" = 0. 

The extrapolated values ^ and 0J1 appear as arguments of the numerical centrifugal 
Kynch flux density function /cf°(-, •) which, according to the Engquist-Osher scheme, is 
defined by f$°(u,v) := f+(u) + fe(v), where /+(u) := 4(0) + /0"max{4(S), 0} ds and 
4(v) — r min {4(s)> 0} ds. The interior scheme, which approximates the field equation 
(16) and from which the values </>",..., 4>nj_x are calculated, can then be formulated as 

+7fh w+i/2(^w+i) - ^n)) - ^1/2 (^w) - m-M, J=i, ■ ■ ■ ,^ -1. 
The boundary formulas follow by considering (20) for j = 0 and j = J and inserting the 
discrete versions of the boundary conditions (17). This leads to 

r0 = ^r1 - %£ri%f™WM + 5^7/2 Wtf) - ^w))> (2i) 
# = ^r1 + ^0-I/2/cu°(^-i>") - 5^r}_1/2(A(^) - A(4>U))-        (22) 

To ensure convergence of the numerical scheme to the entropy weak solution of the IBVP, 
the CFL stability condition Rio2 max0 |/c'k(</>)| (At/Ar)+2max0 a((j))(At/Ar2) < 1 must be 
satisfied. In this work, this condition was ensured by selecting Ar freely and determining 
At appropriately. The accuracy was J = 400. For more details about the upwind method 
and its convergence analysis, we refer to [12, 15]. 

5.3. Numerical example. Sambuichi et al. [19] published centrifugation experiments 
with three different flocculent aqueous suspensions, namely of limestone, yeast, and clay, 
using a cylindrical centrifuge. For each material, the measured gravitational settling rates 
led to a function 4(^)> and compression data determined a unique effective solid stress 
function cre(</>) for each material.   In this paper, we choose the published data referring 
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FIGURE 2. The functions (a) /ck(0), (b) ae(4>) and (c) the resulting function 
a(4>) used for simulating centrifugation of a limestone suspension. 

to a limestone suspension (see [3] for the case of a clay suspension). Sambuichi et al. [19] 
approximated the measured gravity settling rates for various initial concentrations by three 
different connecting straight segments in a logarithmic plot, which yields the function 

/ck(</>) =  < 

(-47.923<£2 + 2.5474$ x l(T5m/s 
1.3580 xlO-V-092775m/s 
5.6319 x l(T13(/r4-9228 m/s 
5.9735 x lCT1 V-1'65 m/s 

0 

for 0 < (f> < 0.035, 
for 0.035 < <j> < 0.08, 
for 0.08 < (j) < 0.119, 
for 0.119 < <f> < 0max = 0.45, 
otherwise. 

(23) 

It should be pointed out that being cut at </>max, this function does not satisfy all assump- 
tions on / stated in Sect. 1. However, due to the presence of the diffusion term, solution 
values are bounded away from </>max, so the numerical results presented below would look 
the same if the jump of the function /ck at <\> = 0max had been smoothed out in order to 
produce an example in which these assumptions are precisely satisfied. 

The solid pressure relationship suggested in [19] can be converted into the function 

ae(<f>) = 0 for (j) < 4>c := 0.28,    oe(<f>) = 0.30184(1 - $"17-544 Pa for cf> > <j>c. (24) 

The density difference for this material was Ap = 1710 kg/m3. The functions /ck and ae 

given by (23) and (24) and the resulting diffusion coefficient o(-) are plotted in Figure 2. 
Figure 3 shows numerical solutions of the phenomenological model calculated with the 

functions (23) and (24) in the case of a rotating cylindrical vessel (7 = 1). The left column 
of Figure 3 shows numerical settling plots, i.e., diagrams of iso-concentration lines for 
selected values of (j), and the right column displays concentration profiles at selected times. 
The parameters and the data that differ in the three cases considered, viz. </>0 = 0.111 and 
uj = 146.4 rad/s; (j>0 = 0.138 and w = 146.4 rad/s; 4>0 = 0.138 and u = 104.9 rad/s, were 
chosen in such a way that the simulated supernate-suspension interfaces could be compared 
with measurements by Sambuichi et al. [19], which are shown as open circles (o). Figure 3 
thus illustrates the different effects of initial concentration and angular velocity on the 
dynamics of the centrifugation process. 



CENTRIFUGATION OF FLOCCULATED SUSPENSIONS 

b) 0.50 
u> = 146.4 rad/s 

= 0.111 

0.40   ■ 

80.0    t[s] 100.0      ' 58.0      61.0      64.0      67.1     r[mm]    73.1 

d) 0.50 

0.40 

0.30 

0.20 

0.10 

0.00 

 1 1 1 1 1 1 !~ 

w = 146.4 rad/s 
<j>o = 0.138 

128.0  t[s] 160.0      ' 58.0      61.0      64.0      67.1     r[mm]    73.1 

')  0.50 

0.40 

0.30 

0.20 

0.10 

0.00, 

ui = 104.9 rad/s 
4>a = 0.138 

-1 1 r~ 

10 s 30 
20 s 

: 0.138 

50 s 

120.0 160.0   *[s] 200.0       ' 58.0       61.0       64.0       67.1     r[mm]    73.1 

FIGURE 3. Numerical simulation of the centrifugation of a flocculated suspension. 

While in the compression zone, where <j> > (j)c is valid and hence (16) is parabolic, the so- 
lutions are similar to those of the pure gravity case [2, 5], there are some distinctive features 
visible in the hindered settling zone (</> < 4>c) where (16) is hyperbolic, due to the rotat- 
ing frame of reference. Most notably, the vertical iso-concentration lines indicate that the 
concentration of the bulk suspension is a (decreasing) function of time, and the supernate- 
suspension interface has a curved trajectory. These properties have previously been found 
by Anestis and Schneider [1], who determined exact solutions to the centrifugation model 
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under the assumption that ae = 0, i.e. A = 0, using the method of characteristics. Of 
course, in the centrifugal case (in contrast to the gravitational) characteristics are not 
iso-concentration lines, see [1,3]. 
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